The Useless Box

We made a Useless Box out of foam board, wood, and a circuit. As the name suggests, it literally does nothing. You flip the switch at the top of the box and a wooden arm will come out of the box to flip it back. Its sole "purpose" is to turn itself off. Our objective was to create a useless object that people enjoy using.


First, we had to gather the materials. It was challenging to find them, and we ended up ordering some of them in bulk on Amazon. We then cut the arm and the faces of the box out of foam poster board using X-Acto knives. We ended up replacing the top of the box and the arm with wooden pieces, because the top needed to withstand the lever being flipped up and down, and the arm needed to be heavy enough to flip the switch. After this, we connected the toggle switch, lever switch, battery pack, and motor to create the circuit. We then hot glued the bottom and all of the sides of the box but one. We assembled the circuit inside the box, then finally glued down the top and remaining side.


After browsing the internet for Maker Faire ideas, we came across a wind-powered machine called the Strandbeest. We were amazed at the Strandbeest, but, though the prospect of creating one was exciting, we decided that it was too complex to complete in the time limit we had. We continued to search and eventually found a kit to make a useless box. We researched the useless box and were immediately intrigued. We thought that creating a machine with no real "purpose" was hilarious. We settled on making a useless box but decided to increase the difficulty of the project by creating it from scratch and rather than using the kit with premade pieces.








During the process of constructing the useless box, we came across many challenges and were forced to tweak our design in order to overcome obstacles. Ensuring that the wooden arm successfully pushed the switch was one of the main issues we had. We had initially cut an arm out of a sheet of foam board. However, after cutting it out, we quickly realized that the foam was too light and weak and wouldn’t be able to push the switch. The foam arm was flimsy and relatively “soft.” Due to this, we decided to make a new arm out of wood. The wooden arm was significantly more durable and rigid than the foam board iteration, and it was able to push the switch. The one downside of using wood was that altering the size of the arm was more difficult. At one point, we had to saw off a bit of the arm in order for it to hit the switch at the right point. While sawing the arm, the wood broke. We had to glue the pieces back together and let the adhesive dry. This set our entire construction process back a day.





In the process of making the box, we learned several things. One thing we learned was how to use a drill. One of our group members sort of knew how to use a drill, but we weren’t sure if the drill was turning the right way or if it was rotating backward. We still don’t know. Another thing we learned was how to cut circles out of using an X-Acto knife, which is a lot harder than it looks. We practiced cutting several circles before cutting out the prototype for the arm. We also learned how to be innovative while assembling things. For instance, we realized our motor was positioned too close to the top of the box for the arm to flip the switch, so we hot glued a diet coke bottle cap in between the lid and the motor.





If we had more time, we would have wanted to fix the box so that the wooden arm would always flip the switch. At the BPC Maker Faire, the box only worked some of the time, and about 40% of the time you had to flip the switch back by hand. We thought we could solve this by using a battery pack with a higher voltage, because ours had only 3 volts, or by using hot glue to secure the wooden arm to the motor. However, when we tried to connect a second battery pack, which was 3 volts as well, nothing would happen when you flipped the switch. As we didn’t have any battery packs with a higher voltage, we disconnected the additional battery pack. If we had more time, we also would have liked to create a similar box where an arm takes your coin from a tray and puts it into the box.


As mentioned above, we learned quite a few things from this process and now have a better idea of how to approach this project. If you were to build a useless box, we would advise that you use a 6-volt battery pack opposed to using a 3-volt battery pack as we did. We found that the 3-volt battery pack supplied just enough power and force for the arm to hit the switch. However, after using the machine a few times, the battery would get drained and you were forced to wait a few minutes before using it again. In addition to this, we would recommend securing the wooden arm to the motor with hot glue or another adhesive. This would ensure that the arm doesn’t wiggle and get out of place, for even a slight change in the position of the arm could determine whether or whether not the arm pushes the switch.


Overall, this project cost around $11. However, do keep in mind that most of these items were bought in bulk or in sets and not singularly. It is difficult to find places which sell these items singularly and purchasing the items in sets was more time efficient. Due to this, the actual cost would be greater than $11 if you were to buy the materials in sets as we did.


Our design was loosely based off instructions we found on the Autodesk Instructables website titled Useless Machine. We didn’t follow the design exactly, as the diagrams it showed were complex and we had trouble understanding them, so Lily’s dad helped us redraw the diagram in a way which made more sense. We didn’t use the same measurements for the box as the creators said to but instead estimated what we thought would work the best. We also decided to make the top out of wood, so that when people flipped the switch back and forth it wouldn’t wear on the foam which we used for the rest of the box. Our box was relatively similar to the one in the instructions, but it wasn’t the same.














No comments:

Post a Comment